THSLSVS

‘CAT: 83-2

General Notes

MISOSYS specializes in quality tools and professional software to
enhance your microcomputer system. A1l of the products in this catalog run
under LDOS. In most cases, version 5.0.x and 5.1.x are supported. EDAS (and
therefore LC) requires the use of the Extended Cursor Mode keyboard driver
that first appeared in LDOS 5.1.1 (Model I) and 5.1.2 (model III). Many of
our newer packages have been designed for use under both Model I/IIl LDOS and
TRSDOS (Model I - Version 2.3 and Model III - Version 1.3).

We have developed a PROfessional series of software specific to Version
6.x LDOS/TRSDOS. This operating system is wused on the Model 4 and other
computers. All products for use with DOS version 6.x are identified with the
prefix, "PRO". The PRO series is priced the same as our current series;
however, since these packages are designed to run under different machines,
please do not ask for any updates to the PRO series from 5.x.x packages.

There are many new products in this catalog. CMD-FILE/PRO-CESS Version 2
is an excellent load-module maintenance utility for the LDOS or TRSDOS user.
MISOSYS picks up where Microsoft left off. The MLIB/PRO-MLIB librarian is
available for the user of Microsoft packages producing /REL files. For the
LDOS user, MACH2/PRO-MACHZ puts disk space allocation under your control
while ZCAT/PRO-ZCAT helps you manage your collection of disks. We have
enhanced versions of ZGRAPH and CONVCPM. We have improved the operation of
ZSHELL, a command processor adjunct that adds more UNIX-like features to
LDOS.

The order form now has a field to enter your machine type. Please enter
the model number of the machine for which you are purchasing the software. In
this way, we can be sure that you are ordering the proper package.

MISOSYS publishes “NOTES FROM MISOSYS" as a means of keeping our
customers informed. NOTES is issued periodically and is free of charge. The
contents will keep you up-to-date on the events happening here and keep you
updated with changes to our packages (that means bug fixes). If you purchase
one of our packages, it will be important to send in the registration card -
that's how one gets registered [it's also important to enter the serial
number found on a diskette label onto the registration card].

The information in this catalog represents all the printed matter we can
send you concerning a software package. If this still does not answer all of
your questions, please write or call.

THE C PROGRAMMING LANGUAGE

Yes, the book that brought the C larguage to the masses is now available
from MISOSYS. THE C PROGRAMMING LANGUAGE, written by Brian W. Kernighan and
Dennis M. Ritchie is "the Bible" of the C language. This book is a must if
you are getting into C. This book is a must if you are purchasing or have
already purchased our LC compiler. THE C PROGRAMMING LANGUAGE documents the C
language as well as provides an extensive tutorial on writing programs in C.

THE BOOK, ACCESSING THE TRS-80 ROM, VOLUME II

This bOOk, written by Richard P. Wilkes and Stephen C. Hill with
technical assistance from Roy Soltoff, Raymond E. Daly IV, and Thomas B.
Stibolt, Jr., is a compendium of knowledge on the ROM Input/Qutput functions
of the Model I TRS-80. Its eight chapters tell it all: Introduction to I/0 on
the TRS-80; The keyboard; The Video; The Printer; The Tape; ROM Disassembly:
1/0; Other I/0 Routines; Random Ramblings. Nine appendices include such
topics as: Lower Case Driver, The TRS-80 Graphics, SET/RESET/POINT Routines,
Lower Case Hardware Conversion, and Parallel Printer Driver. Although written
specifically for the Model I, the textual information is also applicable to
the Model III. THE BOOK, available at a special price while guantities last.

THE PROGRAMMER'S GUIDE TO LDOS/TRSDOS YERSION 6, by Roy Soeltoff

The Guide 1is THE definitive answer to the solutions that programmers
need in order to interface to LDOS/TRSDOS Version 6. This book is written by
the primary author of the DOS. Every LDOS user has known him as the man
behind RSOLTOFF! The Guide contains information never before seen in print.
Six hefty chapters and a rich Appendix cover the entire gambit of topics from
an overview of the system to an in-depth analysis of the file system. The
Guide shows how to write disk drivers, device drivers, and device filters.
The Guide provides entire SVC access protocols.

The six chapters cover: An Operating System Overview; Device
Input/Output Interfacing; Disk Drive Input/Output Interfacing; The DOS
Directory Structure; Disk File Access and Control; and Interfacing via
SuperVisor Calls. The Appendix includes: Boot [Initialization ICNFG
interfacing; BREAK, PAUSE, ENTER Interrupt Latch Handling; Disk Load Module
Format; Error Message Dictionary; Header Protocol of Memory Modules;
Interrupt Task Processor Interfacing; Low Memory Details; Memory Bank
Switching; Non-interrupt Background Task (KITSK) Interfacing; System Disk
Boot Track; System Overlay Contents and Access; Using the System Parameter
Scanner; and Sample Filters [TRAP, SLASHO, BOLDFACE]. The following
paragraphs have been excerpted from the chapter on DEVICE I/0.

"It 1is interesting to observe that the process of removing the filters
from the device chain is exactly the same as the process to add them into the
chain. We can unhook the filters by exchanging the first three bytes of the
DCBs in the order of last-in first-out (LIFO). Thus 1if you exchange the *PR
and *BF Device Control Block TYPE and VECTOR fields, you will obtain the
arrangement previously shown in figure 2-3. The RESET library command does
this for the entire chain,

By now you should be able to notice that we could equally as well remove
Just the SLASHO filter if we swap the bytes associated with the *BF and *SO
Device Control Blocks! A1l that is needed is a facility to do the following:

1. Identify what filter (by module name) is to be removed;

2. Locate the filter in memory via the BGTMOD SuperVisor Call;
3. Obtain the MODDCB pointer to its Device Control Block;

4. Scan through all DCBs to find the DCB pointing to the filter;
5. Then swap the three bytes."

CONBOZ/PRO-CONBOZ by Roy Soltoff

Quite often when you need a specific tool, it is wunavailable. For the
[-80 assembly language prcgrammer, the need arises to maintain or modify
programs written in 8080 code using Intel mnemonics. Since 8080 code is a
subset of Z-80 code, a useful approach is to translate the 8080 source file
to Zilog mnemonics (Z-80) source code. You could hand translate your 8080
files to Z-80 files - a formidable task, indeed! An alternative would be to
use a translator program. CON80Z should prove quite useful in such a task.
The too’ has been designed to facilitate the conversion of assembler source
files written in 8080 Intel mnemonics to Z-80 Zilog mnemonics. CONBOZ is a
source translator to help yocu convert your 8080 files to Z-80 files - easily.

CONB0Z consists of two programs: One, CONBOZ/CMD, performs the necessary
translations of code on a line by line basis. The translation is one-to-one.
tEach Tlogical input line is replaced by one output 1line. The second program,
UNNUMBER/CMD, is a preprocessor to CONBOZ/CMD and is used to alter certain
source files to conform with the requirements for the input file structure.

Although certain 8080 code sequences can be optimized if the Z-80
extensions are utilized, CONBOZ does not perform optimizations. CONSOZ does
help to transform the source into a file structure that can be loaded by your
assembler's editor. Most 8080 assembler source files are structured as pure
ASCII files with each line terminated by a Carriage Return (CR) followed by a
Line Feed (LF). Source lines are also generally not line numbered as are
those wused with most TRS-80 assemblers. CONBOZ will expect the source file to
be un-numbered. The line feed may or may not be present.

Some 8080 assemblers support a logical line ending character, such as
the exclamation mark (!), to create multiple source statements on one
physical line. By wusing the CR="c" parameter in the command line, the
character “c" will be interpreted as a logical line end when found in the
operand field of the source statement and not within single quotes.

Register nomenclature in 8080 code 1is always a single character.
Eight-bit register references in 8080 assembler language are identical to
2-80 references [B, C, D, E, H, LJ]. The "(HL)" 8-bit memory reference is
denoted in 8080 code as the single character, "M". The appropriate
translation from "M" to "(HL)" will be made by CON80Z wherever necessary.

The 8080 16-bit registers available are denoted as B, D, and H with the
OP code changed to "extended" to interpret the reference as 16-bit register
use (e.g. LD changed to LDX). In addition, the Accumulator and FLAG register
are referred to as "PSW" when used in PUSH and POP instructions (PSW is a
carryover from main frames and stands for Program Status Word). CON8OZ makes
the appropriate translations on extended instructions and will translate B,
D, H, and PSW to BC, DE, HL, and AF.

During the translation process, CON80Z will convert all comments in
upper case characters to lower case characters except for the character
immediately following the semicolon (;) comment indicator. CONBOZ will also
translate multiple blanks used as field separators to one tab (X'09').

CONBOZ will perform translations on selected pseudo-ops where there is a
similarity of usage on common TRS-80 assemblers. The following pseudo-op
translations will be performed: <DB/DS/DW/SET> to <DEFB/DEFS/DEFW/DEFL>.
ORDERING INFORMATION:

CONB0OZ: For use with the TR5-80 Models I/I1I1/4 under LDOS 5.x
PRO-CONBOZ: For use with LDOS/TRSDOS Version 6 [i.e. Model 4].

CONYCPM/PRO-CURE (Version 2) by Roy Soltoff and Richard A. Deglin

This wutility will allow you to transfer files from certain CP/M
diskettes onto an LDOS (or TRSDOS 6) formatted diskette. Since there is no
standard media format for CP/M 5" diskettes, MISOSYS has chosen to support
some of the most popular formats. The CP/M formats supported are standard 8"
Single Density (where your hardware permits 8" floppy drives), 5" Single
Density single-sided 128-byte sectoring with 16 or 18 sectors per track
(Omikron version and equivalent), 5" Single Density single-sided 256-byte
sectoring with 10 sectors per track (Osborne format), 5" Double Density
single sided 256-byte sectoring with 18 sectors per track (Model 4, Kaypro)
and IBM PC media 512-byte sectors [Note: 512-byte sector support 1is limited
to TR5-80 Model III and 4. Other machines may be utilized providing the disk
controller driver used by the operating system supports reading 512-byte
sectors.] Two drives are required.

The transfer utility will allow you to move all or groups of files from
certain CP/M disks onto your LDOS disks. It provides many different
parameters to choose the files to be moved. The file specifications on the
CP/M disk should conform to LDOS file specification standards. The filename
and extension must begin with an alphabetic character [A-Z[. Subsequent
characters of the filename and extension must be either one of the alphabetic
characters or a numeric [A-Z,0-9]. Any CP/M file not adhering to the LDOS
standard will require a correct LDOS filename which will be prompted for
prior to a transfer operation of the file.

The CONVCPM utility has been designed to aid in transferring data files
and other files that are not directly executable under CP/M [COM files are
directly executable under CP/M and although transferable with CONVCPM, they
are not “loadable" under LDOS]. Once moved to an LDOS diskette, the
transferred file 1is an exact image of the file as it appeared on the CP/M
diskette. The LDOS end-of-file mark is established as if the moved file ended
on a sector boundary.

CP/M generally uses a sector interleave translation scheme during disk
1/0. The transfer utility has two sector interleave tables for commonly used
CP/M formats. The single-density 8" diskette structure supported is the
Digital Research standard. Each company implementing a version of CP/M on
other than 8" single density media chooses their own sector interleave
translation table. Thus, your version of CP/M that is on 5" media may or may
not utilize the same translation table as that used in CONVCPM which is that
implemented by Omikron, Osborne, Kaypro, or IBM. CONVCPM translation tables
are Single Density 8" (1, 7, 13, 19, 25, 5, 11, 17, 23, 3, 9, 15, 21, 2, 8,
14, 20, 26, 6, 12, 18, 24, 4, 10, 16, 22) and Single Density 5" (1, 5, 9, 13,
17, 3,7, 11, 1s, 2,6, 10, 14, 18, 4, 8, 12, 16). A parameter provides the
means for entering a different translation table into CONVCPM,

The package includes a utility which can be used to remove line feeds
after carriage returns. The LDOS end-of-line sequence is CR only while CP/M
uses CR-LF. This utility will be helpful to remove the extraneous line feeds
from text files by being invoked under your contral!l

ORDERING INFORMATION:

CONVCPM: For use with the TRS-80 Models I/III under LDOS 5.1.
PRO-CURE: For use under LDOS/TRSDOS Verison 6 [i.e. the TRS-80 Model 4].

DSMBLR/PRO-DUCE III - by Roy Soltoff

Programmers have probasly been disassembling machine code programs since
the time programs were being "hand" assembled. What is a disassembly? Simply
the reverse process of assembly - taking a program or piece of a program and
translating it back to an assembly language state. This disassembler is a
tool for helping you with the process. DSMBLR III is a third generation
product. This tool provides extensive capabilities such as direct disassembly
from CMD disk files, automatic partitioning of output disk files, data
screening for non-code regions, and full label generation. DSMBLR III even
generates the ORGs and END statement - the complete ball of wax.

Surely a tool of this capability should be difficult to use. Not so! You
will find that the use of tnis disassembler - even by a beginning assembly
language programmer - will be paying handsome rewards with the ease of its
use and clarity of the documentation. DSMBLR III is a professional tool for
your use.

This program is a macnine language labeling disassembler that produces
an assembler source code using ZILOG mmemonics from either Z-80 machine
language resident in memory or directly from a disk CMD-type file. Both
products [DSMBLR and PRO-DUCE] continue the tragition that have made DSMBLR a
standard for over four years. The disassembler operates in two passes in
order to incorporate symbolic labels in the source output. The symbolic
labels are generated for address and 16-bit references within the
start-to-end disassembly request.

References preceding the START address or references that follow the END
address are output as EQUates. Addresses between program segments such as
would be referenced from DEFS-type instructions are also output as EQUates.
EQUates are also generated for each symbolic label found in the symbol table
that does not correspond to the start of an instruction. These labels are
output in the form:

LABEL EQU $-n

where "n" is the offset to the label address from the current program
counter. Equates are also generated for all address references that extend
beyond the end of the target program. A reference is any relative instruction
target address or a l6-bit target for load, call, jump, add, or subtract
instructions.

Just about every program that you will disassemble has segments that are
actual code and other segments that are data. We don't leave you out in the
cold. The disassembler will assume that all segments are actual code unless
told otherwise by means of a "screening data file". The "screening data"
entry is the way in which you tell the disassembler what segments of the
program are to be interpretsd as data regions.

You arrive at the addresses of the "segments" by an analysis of the
target program. For instance, a first disassembly to the video screen will
easily identify literals since the ASCII eguivalent of the object code is
displayed. Make note of the address ranges on a piece of scrap paper to be
used in building a text file of screening data fields. The "smarter" you are
in assembly language, the easier it will be to identify word and byte data.

Data usually take one of three forms: literal fields commonly cailed
strings (words that you can read - i.e. messages, prompts, ctc.); byte fields
of varying length with each byte a distinct value (tables, conversion codes,
one-byte length specifiers), “confusion" bytes (hex values placed to alter
the sense of following code depending on entry point; and "words" of varying
length (16-bit values commonly used as pointers, arithmetic values, etc.).

The disassembler recognizes certain prefix specifiers to force the data
generation to literal, byte, or word formats.

Where a literal has been forced, the disassembler maintains a range
check for the characters. Valid literal characters are in the range
X'20'-X'26"' and X'28'-X'7E'. If a character value is outside this range, the
decomposition will automatically revert to "xxH' format starting with that
character and continuing until a character within the literal range is
detected. For example, The byte sequence: "4C 61 6E 27 74 OD" will decompose
to the pseudo-OP declaration: "DB<tab>'Can',27H,'t',0DH". The disassembler
will output approximately 18 characters in the operand field of a line. If
the screening range is such that the decomposition would exceed that limit, a
subsequent line is generated. Also, any labels that would be addressed in the
scope of the DB or DW field will be output immediately following the line. A
sample screening data input is:

5228-5229,$5384-53aa, #5829-5832,5416
$5b20-5b3d,5f67-568.

During the disassembly, the byte value of instructions that have a
byte-value operand will be displayed in either of two formats depending on
the value of the byte. Bytes in the range X'20'-X'26" or X'28'-X'7E' will be
output as Titerals in the form, "'c'". A1l other values are displayed in the
form, "xxH", or if the value is in the range X'AO'-X'FF', "OxxH". The byte
values of index instruction offsets are output in the non-literal format
only. Also, the port number of IN and OUT instructions is kept non-literal.
In most cases, this display format provides more meaningful information than
displays strictly in the non-literal format. You will notice output displays
such as:

100E FE45 02443 GE "“E .E
1010 2810 02444 JR Z,M1022 (=
1012 FE44 02445 ce 'o! .D
1014 280C 02446 JR Z,ML022 (.
1016 FE30 02447 ce o .0
1018 28F0 02448 JR Z,MLO0A (p

which provide a greater ease in understanding the logic of a program.

Qutput routed to the CRT is displayed in screen-sized pages. The display
will include the hexadecimal address, the machine code in hexadecimal, a
sequential line number, the OP code, operand, and displayable ASCII
characters equivalent to the disassembled instruction's hex code. A page
advance is user controlled by key entry.

Qutput routed to the PRINTER is paged at 56 1lines per page. Each page
has column headings, supports a user-entered TITLE, and is numbered for
producing sophisticated print-outs that 1look identical to an assembler
listing. Columns include ADDRESS, HEX CODE, LINE NUMBER, OPCODE, OPERAND, and
ASCII equivalent of the hex code.

For the Model I/II1 user, output can be routed to the TAPE CASSETTE in
order to produce a source tape suitable for Tloading into the Radio Shack
cassette Editor Assembler. The tape is generated in blocks of 256 Tines of
code. A tab character is used between line number, opcode, and operand for
best Editor Assembler input.

Qutput routed to DISK produces a disk file suitable for loading into
EDAS or PRO-CREATE, C[isk-modified EDTASM, Radio Shack Series I EOTASM, or
Microsoft's ALDS (M-80). The default file structure is neither line-numbered
nor headered. Options provide for the addition of a file header, line
numbers, and colons following labels in order to tailor the file to most

assemblers [MACRO-80 requires line numbers and colons, Radio Shack Series I
EDTASM requires line numbers, EDAS supports files with all formats]. DSMBLR
ITI automatically segments output source files into manageable file sizes.
The maximum source file size is controlled by you. The disassembler will even
prompt you to change the output file diskette when the disk becomes full.

Machine 1language programs that would overlay the disassembler can be
relocated by BASIC or a utility and conveniently disassembled with proper

address references by using the RELOC feature. The target program could also
be disassembled directly from disk to avoid all memory conflicts.

Here is a sample of the output:

MISOSYS Disassembler - Disk Version 3.0 Partial ROM PAGE 00001

ADDR CONTENTS LINE# LABEL INSTRUCTION ASCII
00001 ORG 0000H
0000 F3 00002 MO000 DI S
0001 AF 00003 M0001 XOR A /
0002 C31530 00004 JP M3015 c.0
0005 C30040 00005 MO005 Jp M4000 c.e
0008 €30040 00006 JP M4000 c.e
0008 E1 00007 MOOOB POP HL a
000C E9 00008 JP (HL) i
000D €31230 00009 JP M3012 c.0
0010 C30340 00010 JP M4003 c.e
0013 €5 00011 MO013 PUSH BC E
0014 0601 00012 LD B,01H o
0016 182E 00013 JR MOO46 i

ORDERING INFORMATION:

DSMBLR III: For the TRS-80 Model I with LDOS 5.0, 5.1, TRSDOS 2.3 and
the TRS-80 Model III with LDOS 5.1, TRSDOS 1.3
PRO-DUCE: For use under LDOS/TRSDOS Version 6 [i.e. Model 4].

EDAS/PRO-CREATE Version IV - by Roy Soltoff

EDAS is a powerful disk-based combined editor and Z-80 macro assembler.
Among its features are direct assembly from one or more source disk files or
memory buffer, conditional assembly, macro assembly, extensive cross
reference listings, and a comprehensive line editor that supports upper and
lower case text entry. EDAS was used to develop LDOS 5 & 6 and TRSDOS 6.

EDAS ASSEMBLER FEATURES

EDAS assembles absolute core-image object code to disk as a directly
executable Tload module (CMD). Source code can exist in memory as well as
included disk files when wusing the *GET assembler directive. *GET files can
be nested to five levels. EDAS uses default file extensions of "ASM" for
source and “CMD" for object code files to guard aginst inadvertant over-write
of a source file with object code. EDAS also respects HIGHS.

A powerful "*SEARCH filespec" assembler directive will invoke automatic
search of the Partitioned Data Set (PalS) "filespec" containing a library of
source code. The PaDS directory search will automatically GET any PaDS member
that would resolve an undefined 1label reference. This process can be
correlated to a relocating assembler's reso1ving references at link time. In
EDAS, the source library is ISAM accessed for minimal I/0 overhead. The PaDS
or PRO-PaDS utility is required to construct your own subroutine libraries.

Conditional assembly 1is supported with seven pseudo-ops; IF expression;
IFLT expressionl, expression2; IFEQ expressionl, expression2; IFGT
expressionl, expressionZ; IFDEF label; [IFNDEF 1label; and IFREF 1label.
Conditional assembly also supports the “"IFx ELSE ENDIF" construct.
Conditional expressions can be nested to 16 levels.

The expression evaluator supports left-to-right evaluation of the

following operators: "+" addition; "-" subtraction; "*" 16-bit by 8-bit
integer multiplication; "/" 16-bit by 8-bit integer division; ".MOD" modulo
division; “<" shift; “&" or ".AND." logical AND; "!" or “.OR." logical OR;

".XOR.* logical exclusive OR; ".NOT." unary one's complement; “.NE." logical
not equal; and “.EQ." logical equal.

Pseudo-ops DEFB and DEFM are synonymous. EDAS also accepts DS, DW, DB,
and DM as well as DEFS, DEFW, DEFB, and DEFM. EDAS provides for binary,
octal, decimal, hexadecimal, and string constants. Constant declarations can
be concatenated on one 1line, by separating terms with commas. This permits
complex expressions such as:

0B 1,2,'Buckle your sho','e'.OR.80H,'I can''t'

Labels may be up to 15 characters long. Labels must start with A-Z, "@",
or "$". Positions 2-15 may also use "?" and "_". The "*MOD" assembler
directive is available to provide a unique character string substitution for
the "7" character appearing in labels of all files accessed via *GET. The
string value will increment each time *MOD is commanded. This will provide
"local label" support for routines read off of disk.

A logical origin pseudo-op, LORG, will assemble Toad module files with
the Toad addresses offset to the LORG address while execution addresses are
based on the ORG address. When wusing EDAS to assemble applications that block
move sections of code, the LORG can be used to assemble the entire job at
once.

The EDAS assembler provides many switch options. These invoke: "-IM"
assemble output to memory; "-LP" 1list to printer; "-NC" suppress false
conditional blocks from listings; "-NE" suppress constant expansions on
listing; "-NM" suppress listing of macro expansions; “-SL" suppress local
labels from symbol table listings; "-WE" wait on error; "-W0" assemble with
object code; "-WS" generate a sorted symbol table 1listing; "-XR" generate a
cross reference data file for downstream processing by XREF.

Nested 7-level MACROs are supported with both positional parameters and
parameters by keyword. Values can be applied to any parameter at MACRO
definition time to allow for expansion time defaults if a parameter is
omitted at the time a MACRO is referenced. MACROs can be defined in memory or
source files but must be defined prior to being referenced. Local labels are
supported with the provision of a string substitution for the "?" character
in labels. The string will provide a unique value for each MACRO expansion.
The MACRO "?" substitution takes precedence over any *MQOD substitution.

Additional pseudo-ops are provided for enhanced operation: "COM" will
allow a comment 1line to be written to the load module. These comment records
will not be loaded when executing the module, but will merely provide an easy
way to store such things as copyright messages in your object deck files;
"TITLE" will paginate your 1listing with a title string including the current
date and time, and an incrementing page number; "SUBTTL" Tists the sub-title
string after each title; "PAGE" ejects a listing to a new page; "“SPACE"
generates additional line feeds during listings for highlighting modules.

A sorted symbol table 1listing is available during the assembly. A
complete CROSS REFERENCE 1listing is available by a downstream processing
utility, XREF. Once an XR data file is generated, XREF will produce a listing
identifying all defined labels, the line number containing the definition,
its value, and the file name of the source file containing the definition
($CORE is used to designate labels defined in memory). For each defined
label, all references to the 1label are listed by line number and source file
containing the reference. XREF lists statistics on the quantity of defined
labels and references. XREF can also be used to generate a file containing
EQUates (or DEFLs) for all symbols or a subset of symbols (those including a
special character). The EQU file is useful for interfacing separately
executable modules to a resident module [such as in overlay applicationsl.

EDAS EDITOR FEATURES

The EDAS editor operates on text in memory and uses a command syntax

identical to BASIC for intra-line editing. Lines hacked to null Tength will
be automatically deleted.

EDAS will "Load" and “"Write" text buffers from/to disk with text file
concatenation in memory. The standard source file will be un-headered and
un-numbered which saves approximately 20% of disk file storage requirements.
However, EDAS will AUTOMATICALLY recognize and properly read a file that is
headered and/or numbered whether through "Load" or "*GET" dinput. Two switches
are provided in the "Write" command to generate a header or line numbers when
saving a text buffer to disk.

You can 1input text in upper or lower case. In the case-converted mode,
all assembler source input is properly converted to upper case,
AUTOMATICALLY. In the case consistant mode, text remains as it was input.
Thus, the editor can be wused for assembler source, or source for other
languages such as PASCAL and C.

The editor supports relocating a block of 1lines with the "<{M>ove
start,end,to" command. Global changes to character strings can be made
throughout the text buffer or to only a designated range of lines with the
"<{C>hange /stringl/string2/start,end" command. Want to copy a block of lines?
The "<C>opy start,end,to” command will duplicate the block numbered from
"start-end" to follow the line numbered “to".

A "<F>ind string" command will search the text buffer starting from
current Tine+l for the next occurrance of "string". String may be up to
15-characters in length. If "string" is null, the next occurrance of the
previous "find string" will be searched for.

Single line scrolling is supported with the <UP-ARROW> and <DOWN-ARROW>
keys. The <SHIFT-CLEAR> key invokes a "warm-boot"™ which aborts the current
operation, clears the screen, and re-initializes line numbering while
maintaining the current text buffer.

A "<U>sage command displays buffer status (in use and remaining), and
the first available in-memory address. The latter is useful for assembling

into memory then executing a "ranch" to the in-memory object program for
debugging purposes.

EDAS provides MiniDOS-type directory "<Qruery" and file "<K>ill"
functions., A "<V>iew" command will 1list a source file to the screen without
affecting the buffer contents. PRO-CREATE lets you invoke DOS commands from
within the editor.

When all things are considered, if you are writing system software,
support software, applications - big or small, EDAS will provide the power to
make your assembly job easier, faster, and more worthwhile. It does
everything but teach you how to program. EDAS comes complete in a three-ring
binder with extensive documentation of over 100 pages of useful information
(not OP-code explanations). A plastic Z-80 quick reference card is included.

ORDERING INFORMATION:

EDAS: For the TRS-80 Models I/II1I/4 under LDOS 5.1.
PRO-CREATE: For use with LDOS/TRSDOS Version 6 [i.e. Model 4].

GRASP - by Karl A. Hessinger and Scott A. Loomer

The GRAphics Support Package (GRASP) is a collection of programs,
filters, and drivers that will enhance the capabilities of your Epson MX-80
Graftrax or MX-100 printer. GRASP implements customized character sets which
include standard ASCII characters, TRS-80 graphics blocks, and Model III
special character symbols.

A screen-oriented character editor makes it easy for you to modify or
create any character font you desire up to a size of 16 vertical by 12
horizontal dots. If you use the double-character mode, your character font
can occupy a width of up to 24 dots. The editor displays an individual
character in a visual matrix made up of Tlarge graphics blocks. By
manipulating the graphics cursor within the matrix, you control exactly what
"dots" will be present in your character.

Filters are provided to toggle underlining and invoke selected
double-width characters intermixed with standard width. Another filter gives
you the capability of printing the Model III special characters with a
minimum of high-memory usage.

A program is provided to easily set the custom functions of your MX-80G
or MX-100 from the DOS Ready mode instead of having to write complex PRINT
CHRS instructions.

The GRASP package includes ALTCHAR/CMD, ALRCHAR/DVR, ALTLINE/FLT,
ALTWIDE/FLT, MOD3CHAR/FLT, GPD/DVR, SETMXB80G/CMD, SETMX100, and UNDRLINE/FLT
- nine programs in all.

The ALTCHAR/CMD program is a special-purpose graphics editor for you to
use in constructing and customing entire character sets for use with the
ALTCHAR/DVR printer driver.

ALTCHAR comes supplied with seven already defined character sets which
are: STD10/12 - a 10/12 pitch character set of "standard" characters, block
graphics, and Model III special characters; TYPELO/12 - a 10/12 pitch set of
typewriter like characters, block graphics, and Model III special characters;
SCI10/12 - a 10/12 pitch set derived from STDI0 which includes greek
characters plus superscripted and subscripted numerals; and OLDENG - a 10
pitch double-width character set of Olde English characters.

ALTCHAR/DVR implements the printer support drivers that will use the
character files to generate the customized character sets on your printer.
The driver options include the following parameters: ADDLF will cause a line
feed to be sent after each carriage return; SPACE will cause the output of an
extra one-half line feed between each line of text; WIDTH establishes the
number of characters to print on a line; DOUBLE will cause the interpretation
of the character set as being "double-width". HIGH will allow the printing of
only characters with an ASCII value less than or equal to the value
specified. Only the necessary portion of the character data set will be read
and stored in memory, thus allowing you to cut down on the ALTCHAR driver
high ?emory requirements; LENGTH will set the page form length in one sixth
inch lines.

ALTLINE is a filter to implement character underlining using a toggle
character. The ALTLINE filter works in conjunction with the ALTCHAR driver to
allow the printing of a continuous underline with little user intervention.
Upon receipt of the switch toggle character, ALTLINE will underline all
characters until either the end of the line is reached or the switch toggle
character is detected. The toggle character is not printed.

This ALTWIDE filter provides the capability of printing selected
characters in double width while all others are printed in standard width. It
could be used, for instance, to print all capital letters in double width.

MOD3CHAR/FLT is a filter that adds the capability to print the special
video characters as displayed on the Model III without the high memory
overhead needed by ALTCHAR. If you only need the special characters, this
filter will do it; however, ALTCHAR is still needed for your custom character
sets.

GPD/DVR allows the use of all dot addressable graphics on the tpson
printers. GPD/DVR replaces the printer driver routines located in the TRS-80
RCM. The TRS-80 ROM printer driver routines convert some characters and trap
others. GPD/DVR eliminates this problem. When GPD/DVR is set, ALL codes will
be passed unmodified to the printer.

The SETMX80G and SETMX100 utilities permit conviently setting the
printer options for the Epson MX-80G or MX-100 printers. Command line options
for MX-80G are:

RESET - reset to defaults RSmode - Radio Shack mode
Paper - paper transfer mode Emph - emphasized mode
Comp - compressed mode eXpand - expanded mode
Italic - italics mode MSB - MSB function
Double - double strike mode Space - line spacing
Form - form length in lines Lines - lines per inch

Margin - restores PR/FLT left margin
The SETMX100 program also supports the following:

US/FRench/GErman/ENg1ish/DAnish/SWedish/ITalian/SPanish
SKip - skip over perfs COLumn - column width

UNDRLINE/FLT 1is used to provide an easy means of underlining on any
printer that will backspace (without erasing) and print an underline
character (ASCII 95)., This filter will work with the Epson MX-80 w/Graftrax
but not with the Epson MX-100. The character specified by the parameter,
CHAR, will be used to start and stop (toggle) underlining.

ORDERING INFORMATION:

GRASP: For wuse with the TRS-80 Models 1I/II1/4 under LDOS 5.1 and Epson
MX-type printers.

HELP by Scott A. Loomer

The HELP package provides prompting notes on the LDOS 5.1 system
commands and syntax. It is supported under LDOS on lower case equipped Model
I and Model III machines. HELP contains two types of files; HELP and SYN. The
HELP files contain detailed descriptions of the system functions including
explanation of parameters and their default values. The SYN files will be
useful to the more experienced user. They consist of the syntax necessary to
invoke the function without an explanation of terms. Both the HELP and SYN
functions can be executed from LDOS Ready or from within LBASIC wusing a
statement of the class: CMD"HELP_(command)".

The HELP programs provide adequate explanations of the specified
commands. Each HELP file also contains a HELP function that will yield a menu
of the helps within the particular AELP file.

The HELP and SYN files are implemented using the Partitioned Data Set
(PaDS) utility. Each member of the data sets is an executable machine
language program that consists of text that is Tloaded directly into screen
memory, a short routine to position the cursor and a transfer to the LDOS
Ready prompt. This manner of implementation allows quick access to any help
member within the files with minimal memory requirements and rapid response
time. When you type HELP_(command), only a small front end loader actually
loads into memory. It, in turn, clears the screen then loads the HELP
explanation directly into the screen memory.

A BASIC program is included with the HELP utility package that will
assist you in creating your own "HELP" type files. The program, TEXTCMD/BAS,
provides an easy means of converting text files created with a text editor
into executable CMD files. You will need the PaDS utility in order to create
new HELP files; however, PaDS is NOT needed in order to use any of the HELP
files included in this package.

The HELP utility also comes with a Quick Reference Card. The QRC is a
ten-panel foldout card that identifies all LDOS library commands, utilities,
drivers, filters, Disk BASIC, and Job Control Language. With HELP at your
disposal and the QRC at your side, keep you LDOS manual on the shelf and
consult it when you need in-depth information. Over 90% of your reference
needs could be rapidly satisfied with the HELP series. Do you need HELP?

PRO-HELP by Roy Soltoff

The PRO-HELP package is custom designed for TRSDOS 6.x! This package
contains two PDS files packed with information. One file contains all of the
mind joggers needed to wuse the DOS. The other places all of BASIC's reserved
words at your fingertips. PRO-HELP automatically displays the names of all of
its screens at your command so you do NOT even have to remember the names of
commands or reserved words. Rather than provide you with two unmanageable
disks of data files, PRO-HELP gives you the brief syntax necessary to invoke
or use the system in two files that don't take up a whole drive!l The DOS HELP
file is 21.25K while the BASIC HELPB file is only 15K.

This package includes three programs: HELPGEN, HELPTXT, and HELPADD.
These are all that you need to create your own partitioned data set HELP-type
files for your application programs. Get HELP at your fingertips!

ORDERING INFORMATION:

HELP: For use with the TRS-80 Model I (lower/case) and III with LDOS 5.1.
PRO-HELP: For use with LDOS/TRSDOS Version 6.

LC C-COMPILER with MACRO ASSEMBLFR - by Jim Frimmel and Roy Soltoff

One of the high-level languages getting a great deal of attention is the
"C" language. This is due in part from the knowledge that UNIX, a powerful
operating system for minicomputers, mainframes, and now micros, is written in
the C-language. Why did they choose C? Because the UNIX designers realized
that application software and system code could be both created and
maintained more easily when written in the medium-level (-language. Another
reason for C's growing popularity, is that it is a language rich in the use
of expression operators, functions and structured code.

If you would Tlike to get started in C, or you are a C expert just
anxious to use a C-compiler on your micro, your waiting days are over. “LC"
(pronounced ‘elsie'), a C-language compiler, is available for wuse.
The LC compiler provides a substantial subset of the C programming language
as described in, "THE C PROGRAMMING LANGUAGE" by Kernighan and
Ritchie. LC was written to be compatible with UNIX programs. LC programs
using the standard library (supplied with the compiler) can be compiled and
run under UNIX. Programs written under UNIX which use only statements
supported by LC are also portable to LC. A large amount of existing software,
both commercial and public domain, will be directly usable by LC owners.

C is a structured, portable language. A “C" program is a collection of
functions arranged hierarchically. C functions <can be recursive and
re-entrant, as Tlocal variables are created and stored in a stack. All
machine-dependent features needed, such as [/0, are not implemented in the
language; rather, they are placed in the standard library. Thus, only the
implementation of the standard library changes from installation to
installation, and C programs are written in machine independent ways. The
language itself provides ways of expressing program structure, and of giving
arithmetic and Tlogical expressions. C is known for having one of the most
powerful expression capabilities available 1in any language. C statements
supply the WHILE, DO-WHILE, FOR, IF, and SWITCH-CASE constructs. C also
provides powerful pointer capabilities to enable direct access to memory and
variable storage.

LC is an integer-only implementation of C which provides all C
statements except "struct”, "union", and “typedef". A1l data types except
“float" and "double" are implemented; “Tong" and “short" declarations are
accepted, but 16-bit fields are used for all integers. In LC, "char*
variables are implicitly unsigned. Single-precision and double-precision
floating point operations are supported via functions supplied in the FP/LIB
library included with the LC compiler. LC accepts multiple input files, with
four levels of nesting for "#include'd" files. The compiler generates an EDAS
Version IV assembler source file which is then assembled with the standard
library and any other Tlibraries needed to resolve function references in
order to generate the executable program. The value in generating assembler
source is twofold. First, you can obtain a complete machine code source
listing which could prove invaluable in debugging complex code. Second, local
optimization of assembler source code can be performed as required by the
experienced assembler programmer. The LC standard library provides such
functions as standard I/0 redirection, dynamic memory allocation, automatic
standard I/0 opening and closing, and program chaining. In addition,
functions specific to the DOS and the hardware are supplied in an

installation library, to provide access to such functions as graphics and
system entry points.

LC supports separate compilation; programs may be compiled in segments,
and frequently used functions can be pre-compiled. You can create your own
library of commonly used functions with the Partitioned Data Set wutility
(PaDS is not included with LC but is available as a separate package). The
assembler source code output by LC is designed to use the extensive SEARCH
and conditional assembly support in EDAS Version IV. The assembler and
companion assembler cross-reference utility are supplied with the LC package.
You need nothing more to siart writing and running C(-language programs except
your computer and a copy of "THE C PROGRAMMING LANGUAGE". LC requires two
disk drives and lower/UPPER case.

Some highlights of the "Elsie" compiler are:

Integer subset of the C language.

Access to floating point routines via functicn calls.

A1l statements supported except STRUCT, UNION, TYPEDEF.

A1l operators supported except "->", ".", SIZEOF, and (TYPENAME).
UNIX-compatible standard I/0 library.

Standard I/0 redirection with complete device independence.

Input using FGETS or GETS functions support 00S Job Control Language.
Dynamic memory management (ALLOC, FREE, SBRK).

Sequential files open for READ, WRITE, and APPEND.

Generates Z-80 EDAS Version IV source code as output.

User libraries in Z-80 source ISAM-accessed PDS files.

Compact one-1ine invocation of the compiler.

LC's interactive friendly interface provides easy way to learn LC options.
Supports separate compilation of functions.

Compiled programs run under both Models I and I1I1I without modification.
Installation library gives access to graphics and DOS calls.

Supplied with example programs and utilities in source form.

The LC package includes the compiler, three libraries, the complete,
macro assembler package, and more than 250 pages of documentation.
National LC Interest Group [LCIG] available with public domain LC
compatible C source software.

CO00D0D 0000000 O0OC0O 00 C

o

As the C language is defined by Kernighen and Ritchie, LC supports all
unary operators except ‘"sizeof" and "casts". LC supports all binary
operators. LC supports the conditional operator [7 : J]. LC supports all
assignment operators. LC provides limited support of the comma operator
within the "for" statement. LC supports all storage classes except "typedef".
LC supports “char", "int", and "unsigned" type specifiers. LC does NOT
support initializers but can initialize all statics to zero via an option. LC
supports single dimensioned arrays. LC supports #define [without macro
substitution], #include, #asm, #endasm, and #option.

The standard library, LC/LIB, includes the functions: alloc, atoi, exit,
fclose, fgets, fopen, fprintf, fputs, free, getc, getchar, gets, isalpha,
isdigit, islower, isupper, itoa, itox, move, printf, putc, putchar, puts,
sbrk, toupper, tolower, and xtoi.

The installation Tlibrary, IN/LIB, includes the functions: box {draw a
box given two opposing corners], call [invoke a machine language routine with
register linkage], circle [draw a circle or arc given radius and arc
parameters], cmd [execute a DOS command and return], cmdi [exit the LC
program then execute a DOS command], curpos [obtain the current cursor
position], cursor [position the cursor to row,coll, date [obtain system date
stringl, 7111 [set a memory block to a valuel, freemem [obtain size of
available memoryl, inkey [strobe the keyboard], inport [fetch input from a
port], line [draw a line between twe points], outport [output a value to a
port], pixel [set, reset, or point a graphics pixell, ploc [alter the
graphics plotting originl, pmode [sel the graphics plotting quadrant], point

[obtain the state of a pixel], reset [turn off a pixell], set [turn on a
pixel]l, strcat [concatenate two strings], strcmp [compare two strings],
strcpy [copy one string to another], strepl [replace a substring with a
stringl, strept [replicate a source stringl, strfind [find a substring within
a stringl, stright [replace a destination string with the rightmost portion
of a source stringl, strleft [replace a destination string with the Jleftmost
portion of a source stringl, strlen [obtain the length of a stringl, strmid
[relace a destination string with a substringl, and time [obtain the system
time stringl.

The floating point library, FP/LIB and FP/0BJ, includes the functions:
dadd, dabs, dcmp, ddiv, dfix, dint, dmul, dsgn, dsub, dtoa, dtoi, dtof,
fpinit, fabs, fadd, fatn, fcmp, fcos, fdiv, fexp, ffix, fint, flog, fmul,
fraise, frnd, fsgn, fsin, fsqr, fsub, ftan, ftoa, ftod, ftoi, itod, and itof.
These functions support single-precision floating point arithmetic including
transcendental functions as well as double-precision arithmetic.

With LC, in no time at all you will be writing C programs such as:

#include stdio/csh /* standard [/0 definitions */
/* XFER - copy standard input to standard output */
int c, bytes, lines;
FILE *fp;
main()
{ while((c=getchar()) != EOF)
{ putchar{(c);
++bytes;
if (c == EOL) ++lines;

f‘p = fopen("*doll' IINII);
fprintf(fp,"%d characters , %d lines were copied", bytes, lines);

This program copies standard input (*KI) to standard output (*D0) while it
counts the number of characters and lines. However, with LC's 1/0
redirection, input and/or output can be changed to any other device or file.
Type directly into a file or copy a file to a printer!

Modernize your programming skills and begin writing maintainable
applications. Get C - get LC!

ORDERING INFORMATION:

LC: For use with the TRS-80 Model I/II1/4 under LDOS 5.1. Includes LC/CMD,
LC/LIB, IN/LIB, FP/LIB, LC/ASM, LC/JCL, LCMACS/ASM, DO/FLT, STDIO/CSH,
EDAS/CMD, XREF/CMD.

PRO-LC: For use with LDOS/TRSDOS Version 6 [i.e. Model 4]. Includes LC/CMD,
LC/LIB, IN/LIB, FP/LIB, FP/0BJ, LC/ASM, LC/JCL, LCMACS/ASM, STDIO/CSH,
PRO-CREATE, XREF/CMD, FPCAT/CMD.

MSP-01/PRO-GENY - By Roy Soltoff and Scott A. Loomer

This package is a collection of four utility programs to further enhance

the use of your 00S. These programs are entitled: DOAUTO, DOCONFIG, MEMDIR,
and PARMDIR [under LDOS/TRSDOS 6, SWAP replaces DOAUTO].

How many times do you suppress the execution of an “AUTO" command by
holding down the <ENTER> key on boot-up only to later decide you want to
execute the AUTU. However, you really don't remember the specific syntax of
that complicated LBASIC command line that auto-executes. Wouldn't it nice to
be able to command the AUTO to execute without having to type BOOT or hit the
RESET button? The DOAUTO command, written by Roy Soltoff, is a short program
that will execute the "AUTO" command buffer lccated on ANY drive - not just
the SYSTEM drive. It's as easy as typing "DOAUTO :2".

DOCONFIG, written by Roy Soltoff, is a major enhancement of the SYSGEN
configuration capabilities of your DOS. DOCONFIG works in one of two ways.
You can SAVE the current configuration of your system to ANY file of your
choice on any drive of your choice. You can also restore the machine's
configuration at any time from any of the configuration files you created.
‘ne configuration file is constructed identically to the LDOS CONFIG/SYS
file, except that now YOU control configurations without having to re-boot
your machine (iDOS/TRSDOS 6 DOCONFIG files do not overwrite the user program
region with drive control table information as is done under TRSDOS 6 and
thus cannot be used as CONFIG/SYS files. This was done to permit you to
save/restore the machine's state while within a running BASIC program].

DOCONFI6& an even be executed from a Job Control Language file to either
SAVE or RELOAL « configuration file while the JCL is executing. This will
work even if a re-loaded configuration changes the drive assignment for the
drive currently executing the JCL file - be it the system's SYSTEM/JCL file
or your own execute-only JCL file. DOCONFIG is smart enough to correct the
JCL interfacing being done by LDOS if drive assignments are switched. If the
JCL is SAVING a configuration, the CONFIG file will not reflect JCL as being
active. The use of DOCONFIG now gives JCL more power to run job streams that
require revised high-memory configurations for selected applications. Wow,
dynamic reconfiguration - on the fly!

Ever wonder what 1in the world was up in high memory when you execute a
MEMORY command and it says HIGH$=X'E123'? Where did all that memory go? No
need to wonder any more. MEMDIR, written by Scott Loomer, is here to give you
a directory of high memory. It tells you what program/module is there, where
it resides, and how Tlong it is. MEMDIR makes use of the front end linkage
protocol as documented by Logical Systems. For the LDOS/TRSDOS 6 user, MEMDIR
even provides a directory of low-memory driver and module usage.

The biggest part of the package is PARMDIR, written by Roy Soltoff. This
is a tough one to explain. Essentially, PARMDIR is a specific-purpose report
writer that uses the on-line disk directories as a data base of information.
PARMDIR was originally written to automatically generate Job Control Language
files based on tests of data contained in the directory. For instance:

PARMDIR /DOC:3 REN:0 (A=“"RENAME *, X="/SCR")

will produce a JCL file containing an entry for all files on drive 3 that
have an extension of "/DOC". Fach JCL line of the file, REN/JCL, will appear
as: “RENAME filename/DOC:3 /SCR". If the parameters were entered as "(A,X)",
then each JCL line would appear as: “#A# filename/SCR #X#". Thus, at JCL
compilation time, parameters may be substituted for "A" and "X".

However, PARMDIR goes 1light years beyond this simple example. You can
have any of the parameters A,B,C,X,Y,I be constructed with directory data

information for each filespec selected. The information 1is positioned
according to key-word assignment within the parameter string. For example,

"(A="$NAM SEXT SLRL $REC")"

will recover in each output 1line, the file name, extension, logical record
length, and number of records. Keywords are available also for protection
level ($PRO), ending record number (3ERN}, file date ($DAT), end-of-file byte
location ($EOF), drive spec ($DRV), volume name (3VNM), volume date ($VDT),
or the entire volume id ($VID).

Each of the keywords (except filename/ext) may be tested for value
comparisons 1in order to select the directory record for output. The
comparison is constructed as a complex "IF expression" syntax. For example:

IF="$LRL <= 18 & $REC < 3"

selects those directory records with a logical record length of from 1-18
only if the number of records is Tless than 3. If you make an error in the
syntax of the expression, PARMDIR will tell you exactly what character was in
error - that's friendly!

The output can be directed to any file or device and the output is
SORTED by filename/extension. Since PARMDIR can make extensive use of
parameters, you can enter parms in the command 1line OR from any file or
device. You can create a PARMSLIB disk file that contains NAMED parameter
procedures and refer PARMDIR to the specific procedure of parameters for a
particular execution of PARMDIR - just Tike JCL can use a PROCLIB with named
JCL procedures. PARMDIR even permits you to type in parameters from the
keyboard at execution time if you select PARMS="*KI" as the parameter input
device. There is no 1limit to the amount of parameters that can be entered
from a parameter file or device input - only the command line limits its
entry to 63 characters max.

When PARMDIR generates its JCL file, all of your parameter entries are
written as comments to the output. You are even provided a parameter to
suppress these "notes". PARMDIR can automatically generate a Partitioned Data
Set (PaDS) "MAP" file as easy as "PARMDIR /TXT:2 RgYSfMAP (MAP)".

PARMDIR can access the directory information of a specific drive or all
on-line drives. You «can use PARMDIR to construct customized directory
listings. Use it to mechanize your JCL file construction. In essence, PARMDIR
is the most versatile program to come along that lets you tap the data
contained in directories.

The fourth utility supplied with PRO-GENY is SWAP. The SWAP utility,
written by Roy Soltoff, allows to to switch the Jlogical-to-physical disk
drive assignments for any two logical drives. This can be done at DOS Ready
or while within executing Job Control Language. SWAP is useful for switching
hard disk drive assignments from slots 4-7 to 0-3. Since the DOS always
globally searches disk drives in the logical drive order 0-1-2-3-4-5-6-7,
SWAP is useful to just change the search sequence to your requirements.

PARMDIR is worth the cost of the entire package. However, you get
PARMDIR, MEMDIR, DOCONFIG, and DOAUTO/SWAP in the MSP-01/PRO-GENY package.
You won't know how you ever got along without it.

ORDERING INFORMATION:

MSP-01: For use with the TRS-80 Models I/II1/4 under LDOS 5.1.
PRO-GENY: For use with LDOS/TRSDOS Version 6 [i.e. the Model 4].

PaDS/PRO-PaDS - by Roy Soltoff

Katzan, in OPERATING SYSTEMS, A PRAGMATIC APPROACH, defines a
Partitioned Data Set (PDS) as "a data file that is divided into sequentially
organized members." Katzan further states, "Each PDS includes a directory
that points to the beginning of each member. Data sets of this type are most
frequently used to store object programs - each member corresponds to a
single object program. The POS as a whole is referred to as a library.
Operating system Tlibraries and user libraries are stored in this fashion."
This definition describes exactly, the two LIB files in LDOS, SYS6/SYS and
SYS7/8YS.

The PDS structure has provided a technique for combining separately
executable object programs into one file thereby saving directory slots. It
also saves time by not having to load an entire 10K-15K file just to get a
few hundred bytes or a few thousand bytes of program loaded if all LIB
commands were just one big file. The system overhead of having to read and
search the member directory is minimal.

Up until now, only the system library has supported the PDS structure.
Now, with this PaBS utility from MISOSYS, you can have "user" PDS structures.
The PaDS command can be used to create custom libraries. A 1library could be a
collection of a dozen utility programs - all stored under one name but
directly executable by specifying the 1library name followed by the member
name. Consider for a moment, that you have built a 1library containing
CMDFILE, DSMBLR, FED, BINHEX, EDAS, and XREF. The library name MYLIB was
chosen. You can then execute EDAS by entering:

MYLIB(EDAS)

at the LDOS ready prompt. If you wanted to build a custom LDOS command
library, you could use CMDFILE to extract DIR, COPY, KILL, DEBUG, ROUTE, and
RESET from SYS6/SYS and SYS7/SYS and build them into a user SYSLIB. Then you
could kill off SYS6 and SYS7 which would save about 15K from your “custom"
SYSTEM disk. When you want to do a directory, you would only need to type:

SYSLIB(DIR) :2 (A,I)

to achieve the same result as if you had typed DIR :2 (A,I) on a regular
SYSTEM disk. Albeit you could have named your user library, "S" and save the
entering of five characters each time you wanted to execute a member of the
library. That would Tlet you use "S(DIR)"! PDS also allows you to abbreviate
the member's name to as few characters as uniquely identify it. If “DIR" was
the only member starting with the letter "D", you could even have entered,
IIS(DJ.‘ .II

The PaDS command is itself a Partitioned Data Set and supplies the
following functions via installed members:

o APPEND - Appends a new member to the existing PDS and updates
the member directory and ISAM table records.

0 BUILD - Creates a new Partitioned Data Set. The PDS is composed
of a Front End Loader program, a MEMBER directory, and
an ISAM table.

o COPY - Transfers an image of a PDS member from the PDS to a
designated file.

o DIR - Provides a directory listing for each member with its name,
type, date of addition, and file space occupied.

o KILL - Makes a member inaccessible for access.

o LIST - Will list a specific member in standard hex format or ASCII.

o PURGE - Removes killed member(s) from the PDS and compresses the file
to reclaim the space previously occupied by the killed
member(s).

0 RESTORE - Restores a killed file to accessibility.

Here is a sample PDS directory:

07/07/82

PDS: U/CMD
convcpm P
debugger P
dirlist P
dsmblr2 P
fed P
monitor P
strip P
xrefl P

Note that it is sorted, shows

13-Mar-82
13-Mar-82
27-Mar-82
13-Mar-82
13-Mar-82
13-Mar-82
13-Mar-82
13-Mar-82

date that each member was
organize your disk spac2 and unclutter your directories!

ORDERING INFORMATION:

1597
2398

957
5724
7308
1814

767
2127

the

added

Size: 45K Members: 15/ 16
dct P 13-Mar-82 3620
dircheck P 13-Mar-82 2137
doconfig P 30-Apr-82 459
edas P 13-Mar-82 10123
led P 07-Apr-82 5699
reformat P 13-Mar-82 /14
unhash P 13-Mar-82 346

size of each member (in bytes), and has the
to the PDS. This is an excellent tool to

PaDS: For use with the TRS-80 Models I/I1I/4 under LDOS 5.0.3 or later.
PRO-PaDS: For use with LDOS/TRSDOS Version 6 [i.e. Model 4].

SOLE - by Roy Soltoff

LDOS is a sophisticated operating system. The folk's at Logical Systems
have expended great efforts in producing such a powerful DOS for the TRS-80
users. Paramount in their implementation was the concept of standardization.
LDOS nmakes every attempt at standardizing functions and media whenever
possible. The media format chosen for double density operation on the Model I
was an entire diskette formatted in double density. Since the TRS-80 Model I
cannot begin to BOOT a diskette unless the BOOT sector (track 0, sector 0) is
formatted in single density, the standard LDOS double density diskette cannot
be BOOTed. As a result, some users have taken LSI to task for not providing a
means of booting a double density disk on the Model I.

Operation of the RESET button causes the Z-80 CPU to begin execution at
address 0. The Model I eventually finds its way to a ROM routine which
attempts to read a disk booting routine stored on sector O in track 0 into a
buffer at X'4200'. The problem here is that this ROM routine can only read
the boot sector if it is in single density. Since LDOS has a double density
track 0 when a disk is formatted in double density, the ROM cold start
routine doesn't like it.

The disk boot routine 1is supposed to read in the resident system, known
as SYSO/SYS. If SYSO has been read successfully (that means no disk error in
big Tetters), then the booting routine passes control to SYSO. The resident
system initialization routine does its thing, loads in a CONFIG/SYS file if
one is available, and finally brings in SYS1 to display the “LDOS Ready"
prompt and await your command. A Tot of work has been done to get to this
point. If you are lucky to have a working dcuble density adaptor, then you
would have liked all of this work to take place on a double density diskette.

SOLE is an application to accomplish that goal. It will create a double
density booting SYSTEM diskette for wuse with LDOS on a Model I. It
essentially constructs a single density track 0 on a previously formatted
double density diskette. It then proceeds to add a second BOOT routine and
double density READ ONLY disk driver to be used to read SYSO. This SOLE BOOT
routine and driver 1is what the sector 0 BOOT routine will read. Since the
track 0 is single density, the ROM can read sector 0. The SOLE additions are
also placed on track 0 so the BOOT routine in sector 0, which expects to see
a single density diskette, actually winds up reading only single density
sectors. The sector 0 BOOT passes control to the SOLE BOOT after it
successfully loads the SOLE BOOT.

The SOLE BOOT routine interfaces with a double density driver that can
do only one thing - read sectors. It reads the SYS0 which is obviously
positioned on some double density track. After SYSO is loaded and before
passing control to SYSO, the SOLE BOOT slides its booting drive code table
into the standard drive 0 position. Then when SOLE passes control to the SYSO
initialization, SYSO is interfaced to the double density read-only disk
driver. The requirement here is that an LDOS double density driver needs to
be Toaded. That is accomplished by having it 1in a configuration file. Thus,
when the initialization part of SYSO loads in the CONFIG/SYS file, the LDOS
double density driver is loaded into high memory and the drive code table
data is updated.

ORDERING INFORMATION:

SOLE: For use with the TRS-80 Model I [or work-alike] under LDOS 5.0 or 5.1
with either a PERCOM-type or the Radio Shack type double density adaptor.

ZGRAPH/PRO-ZGRAPH by Karl A. Hessinger

IGRAPH is a graphics editor that allows creation of graphic images.
ZGRAPH possesses two sets of commands, primary commands and secondary command
functions. A '"help' list of commands at both levels 1is available by typing
<H> for primary commands or <F><H> for secondary functions.

The video display screen of the TRS-80 models consisls of memory arrayed
as 16 rows of 64 columns or 24 rows of 80 columns. Each memory location is
capable of displaying one ASCII or special character or any combination of
the six graphic dots referred to as pixels. ZGRAPH allows any of the 160 (224
on the Model 1III/4) possible characters (ASCII, graphic and special) to be
displayed at any point on the screen.

Cursor movement depends on the mode that ZGRAPH is in. In the graphics
mode, movement is achieved using the number keys 1-4 and 6-9 or the ARROW
keys. If you go oft the screen to the left, you will reappear on the right.
The same is true of the top and bottom.

In the DRAW mode, the cursor will leave a trail of bright graphic pixels
everywhere it goes. In tne ERASE mode, the graphic pixels will be turned off
everywhere the cursor is moved. The MOVE mode is a non-destructive means of
moving the cursor. While in the text INSERT mode, cursor movement is via the
arrow keys. The cursor 1is non-destructive of both graphics and text. Simply
move the cursor to the desired position and start typing text.

The entire screen can be reversed (graphic on/off) via the REVERSE
command. Text will not be reversed. The XFLIP command will create a mirror
image of the screen about the VY-axis. The graphics will be a true mirror
image and the order of text characters will be reversed. The YFLIP is similar
to the XFLIP except rotation is about the X-axis.

ZIGRAPH uses all available memory (to HIGH$) as in-memory screen buffers
in addition to the video display screen. All but one of these buffers are
general purpose buffers and are available to the user Lo store displays. This
is wuseful when creating a large graphic consisting of several ZGRAPH images
or in creating those images using the MERGE function. ZGRAPH can also load
and save images to disk files. All data moving to and from the disk passes
through the primary video display. The reserved internal display buffer is
used for error recovery in case you make a mistake (perish the thought!).

GET is the function for loading the video display screen from a disk
file or one of the buffers. Any one portion of the screen can be saved to a
buffer or file by using the SAVE command. MERGE allows you to superimpose one
graphic image over another. If you want to exchange the screen display with a
buffer, use the XCHANGE command.

The INPUT and OUTPUT functions reference all of the in-memory buffers
for use as a multiple-image-file. Such a file is used with the BINPLAY
program to provide slide-show type operations.

ZGRAPH provides functions to make your graphics generation easier. The
DUPLICATE command replicates a block defined by markers to other areas of Lhe
screzn. LINE will establish the best fitting line between the marker SET and
the current cursor position. The marker position will be updated to the
currant cursor position after each line is drawn providing an easy way to
construct Tlines connected end-to-end. The RECTANGLE command creates a
rectangle with opposing diagonals being the SET marker and current cursor
position. The FILL function completely whitens or darkens a display region
enclosed by a boundary. This 1is similar to the "“paint" command in other
graphics systems. The CIRCLE function “rounds out" the ZGRAPH graphics
functions by drawing a circle or an are arcund the current cursor position.

You can also enlargen a particular rectangular area of the screen via the
MAGNIFY function. The REDUCTION function can be used to shrink a rectangular
area. Finally, the ZERO function whitens or darkens a marked block.

While in the WINDOW mode, the entire screen display will move in
response to the arrow keys. Any part of the image moved off of the edges of
the screen is erased. This command is very useful to reposition an entire
image on the screen.

To allow ZGRAPH created displays to be wused in other applications, the
BINCUNV post-processing program is provided. ZGRAPH's standard file format is
a pure binary representation of the screen display. Each 1line of the screen
memory is saved as the values of the memory bytes terminated by a carriage
return. BINCONV converts its standard file formats to:

<1> - ZGRAPH to Load Module in order to create an executable /CMD file
that will place your image cn the screen;

<2> - IGRAPH to Packed BASIC - creates a file of packed graphics strings
with each line consisting of the string {ZG$(#)="packed value of one line of
your image"} starting with an index (#) of 0, line number of 100 and line
number increment of 10;

<3> - ZGRAPH to BASIC Data which creates BASIC data statements of 16
decimal numbers representing the sequential values of your screen image;

<4> - ZGRAPH to EDAS creates a file in assembler source format of DEFB
statements with 16 decimal values per statement representing the values of
the bytes of your image. This file may then be merged into an EDAS assembler
program.

The ZGRAPH graphics package also includes a keyboard filter, DOSAVE,
that is similar to the LDOS screen print function. However, where the screen
print directs an image of the screen to the printer, DOSAVE will direct the
screen image to a disk file specified by the user at the time you depress
<CLEAR><SHIFT><S>. These screen files may be T1oaded into ZGRAPH for further
operations. Also included is the BINPRINT program which provides the
capability of printing a binary graphic file to a printer that supports
compatible bit graphics (MX-80/Graftrax).

The EPBINCAT/CMD and RSBINCAT/CMD programs included with the ZGRAPH
package provide for printing the graphic binary files to Epson or Radio Shack
DMP printers respectively. Each program allows for the concatenation of more
than one file to generate a large "picture" composed of many smaller ones.
The xxBINCAT programs also provide for magnifying the printed image.

You get ZGRAPH, BINCONV, DOSAVE, EPBINCAT, RSBINCAT, BINPLAY, and
BINPRINT in this graphics editor package. In no time at all, you will be
creating complex graphics images.

ORDERING INFORMATION:

ZGRAPH: For the TRS-80 Models I/III/4 with LDOS 5.1.
PRO-ZGRAPH: For use with LDOS/TRSDOS Version 6 [i.e. Model 4].

ISHELL - by Karl A. Hessinger and Roy Soltoff

A feature of the UNIX operating system that has made it famous is the
SHEL., a command language interpreter. The "SHELL" generally provides for the
parsing of arguments, the ability of redirecting standard 1/0, and pipelines.
LDOS already supplies a standard procedure for argument parsing (i.e. BFSPEC,
@FEXT, and BPARAM). Now Karl Hessinger has written ZSHELL to supply standard
1/0 redirection, pipelines, and more.

What is standard I/0 redirection? Simply this! Your standard input is
the *KI device. Your standard output is the *DO device. LDOS already permits
you to redirect all devices by using the ROUTE library command. Under the
UNIX "SHELL" concept, standard I/0 redirection permits you to temporarily
route either standard input, standard output, or both - for the duration of
the execution of a command. The original device linkage is restored

AUTOMATICALLY. Programs written to use standard input and output can easily
use any device by this tamporary redirection - even files!

Many commercial programs are written that use the single-key inpput
routine, @KEY or G@KBD, to fetch keyboard input. You would just love to be
able to run these programs from the sophisticated Job Control Language of
LDOS. However, since JCL operates only from the line input routine, @KEYIN,
you cannot “automate" your operation. With ZSHELL, ANY PROGRAM THAT USES THE
LDOS KEYBOARD DRIVER CAN BE OPERTATED SO THAT ITS INPUT IS FETCHED FROM A
DISK FILE. Furthermore, control is automatically passed back to the keyboard
when the program's input gathering reaches the end of the ‘“key" file. This
redirection function will pay for the cost of ZSHELL many times by saving you
work and time.

Piping, under UNIX, operates in a multi-processing environment. One
executing program communicates its output to the input of another executing
program. The connection is visualized as a "pipe". LDOS does not provide
multi-processing; however, ZSHELL realizes the pipe as a temporary holding
file that receives the output of the first program and uses this file as
input to the second.

With ZSHELL, you can enter multiple commands on a single line. There is
also a provision to designate the *PR device as "standard output" for
redirection purposes. With ZSHELL, you will be entering commands such as:

LBASIC <TEMP/BAS
DIR :1 (A,I,S) | LSCRIPT
DEVICE (B=N) ; FREE

The first example has LBASIC getting its input from the file, TEXT/BAS,
reverting to the standard *KI linkage upon reaching the end of the file. In
the second example, the directory display is automatically loaded into
LSCRIPT, while the third illustration is an example of multiple commands on a
line.

For our LC wusers, ZSHELL provides a command line over-ride character
which if entered, will inhibit ZSHELL from scanning for redirection. Thus,
redirection inherent in an LC generated program can be utilized even when
IZSHELL is installed and active.

ZSHELL is 100% compatible with Job Control Language. JCL job streams can
be constructed with commands which wuse the power of ZSHELL's redirection
capabilities.

ZSHELL is self relocating and requires less than 1500 bytes of upper
memory. It functions only with (DOS 5.1.x versions. It provides I[/0
redirection of *KI [via "<"], *D0 [via ">"], and optionally, *PR [via ">"] in

lieu of *DO. Standard outpul can be direcled Lo vverwrite or append to [via
"»>"] a disk file. A program may be piped [via "|"] to another with the pipe
file located on the drive of your choice. Multiple commands may be entered on
a single line [via ";"]. Integrate these UNIX-inspired features into your
LDOS and expand your system's capabilities.

Included with the ZSHELL package is WC, a wild-card "shell" processor,
written by Roy Soltoff, that allows you to invoke compatible commands on all
file specifications that match a wildcardspec entered on the command line.
You enter the command once while the WILDCARD shell processor searches the
designated disk drive(s) for files that match your wildcard specification.
WILDCARD builds a Job Control Language file of your command Tline substituting
each matching file specification for the wildcard specification on a separate
command line. WILDCARD then automatically executes the JCL file.

The "wildcardspec" uses the file name and file extension as two distinct
fields for matching purposes. If the drive specification is entered, WC will
search that specific drive for all files matching the name-extension wildcard
fields. If the drive specification 1is omitted, then all drives will be
searched. Within each field, WC accepts two wild characters, "?" and "*". The
question mark will match any character in that character position. The
asterisk is used to match all trailing characters in the field. For example,
"PSHELL/TXT:1" will match with ASHELL/TXT, BSHELL/TXT, etc. but ASHELL1/TXT
will not match. A global match of all filespecs would be an entry of the
form, "*/*". whereas a match of all /CMD files would be an entry of the form,
"*/CMD". If a minus sign, "-", precedes the filename field, WILDCARD will
select files that do not match the wildcardspec. Any entered password will be
used in the full file specifications generated by the selection process.

WC is quite useful to perform repetitive tasks on files whose file
specifications are similarly constructed. For example, to list out all /TXT
files on drive 1, you could use a WILDCARD entry of: WC LIST */TXT:1

ORDERING INFORMATION: .
ZSHELL: For use on the TRS-80 Model I/III/4 under LDOS 5.1.

CMD-FILE/PRO-CESS - by Roy Soltoff

The PRO-CESS/CMD-FILE tool is a powerful machine language program that
has been designed to provide total maintenance of program load modules on a
record basis. This means that it references the load module as a multi-record
type, variable length record file - just like the operating system loader. By
using the various commands identified in the menu, you can completely
reorganize the load structure of a given module or modules in order to make
them more efficient in terms of loading speed and occupied disk space.

This maintenance tool provides for file appending, mapping, sorting,
packing, offsetting, library member and partitioned data set member
extraction, as well as the specified deletion of any load moduls record. It
can convert "CMD" files which contain various types of records to "CIM" files
which are pure binary core-image constructs. It also provides the capability
of converting "CIM" files to "CMD" files. It gives capabilities to load
module maintenance never before possible.

By far, the most powerful function included in this tool 1is the
reorganization capability of the PACK command. This versatile function
converts any X-type patches to D-type patches [X-type patches are generated
by the LDOS Version 5 or LDOS/TRSDOS Version 6 PATCH utilityl. It then sorts
the buffer by load address to construct sequential load records and generates
a load module file that uses maximum sized (256-byte) load records. This
feature is quite useful for reorganizing large inefficiently generated load
modules such as Tandy's COBOL package. The PACK function is also useful for
reorganizing the out-of-sequence load modules generated by the LC compiler.

A1l of the functions are immediately available through single Tletter
commands. These commands are displayed in the MENU which looks like:

PRO-CESS 2.0 [Copyright (C) 1983 Roy Soltoff]

|

|

|

| <C>lear the buffer region

| <D>0S Command request

| <E>xit to DOS

| <I>mage file load/write

| X<L>o0ad a file into the buffer

| {M>ap the buffer records

| <0>ffset address from current load origin
| <P>ack the buffer records

| <R>emove a record from the buffer
| <S>ort the load records by address
| <{U>n-remove a "removed" record

| <W>rite the buffer to a disk file
|

|

|

|

|

|

Buffer: Size 46802 Used 00002 Free 46800 Records 00000
Module: Origin FFFF End 0000 Entry 0000 Offset 0000

Each of the commands displayed in the MENU may be selected by depressing
whatever key is contained within the angle brackets. A blinking "cursor" can
be moved via the <UP-ARROW> or <DOWN-ARROW> keys. Alternatively, any command
that is preceded by the graphics block can be selected just by cepressing the
<ENTER> key in lieu of the command letter.

The <C>lear command is simple enough - it restores the buffer as if you
just executed the program. The <D>0S Command function provides access to

operaling system commands from the MENU level. Your D05 requests should be
limited to 1library commands [Model I/III CMD-FILE wusers can invoke any
command]. The <E>xit command provides the means to terminate the maintenance
session and return to DOS.

The <I>mage command provides two functions - both relating to core-image
files. Use the <I>mage command to load a core-image file from disk into the
buffer. Since core-image files have no Jloading information contained in the
file, it is necessary to specify the origin address of the module. Use the
<I>mage command to write the buffer out as a core-image file. The <IW>
function will first scan the Jload records to ensure that they are in
sequential load order, for a core-image file cannot be constructed if the
records are out of order. It is not necessary for the 1load records to be
contiguous. The <IW> function will generate null bytes, X'00', for all
addresses interstitial to two adjacent non-contiguous load records.

The <L>oad function is used to read a load module file into the memory
buffer. The file will be appended to any already contained in the buffer. If
the file 1is recognized as an LDOS structured ISAM overlay file, you will be
able to extract a single member by identifying the overlay number of the
desired member. If the file is recognized as a PaDS file, you will be able to
extract a single member by identifying the member name. The buffer and module
status lines will be updated to reflect the revisions made to the buffer with
the load of the file.

The <M>ap command provides the function of mapping the buffer contents
by record. Records will be identified as to type: Module header, Yanked load
block, Load, Transfer Address, and so forth. The address range of load
records will also be displayed.

The <O0>ffset command changes a load module so that it loads into memory
at a location different from where it was assembled to execute.

The <P>ack operation is used to reorganize an object load module file so
that it is most efficient in disk storage space and optimum for rapid loading
by the operating system. Packing is a three-phase operation. The first phase
idenLifies any LDOS X-type patch records and packs the object code revisions
into the preceding load records wherever possible. The second phase then uses
the <S>ort facility to sequence the load records by sequential load address.
The third and final phase generates a new object load module file with
maximum-sized load records. This 1is achieved by combining short contiguous
load records wherever possible.

The <R>emove command can be used to delete an entire record from the
load module. The <S>ort command reorganizes the buffer's load records so that
they are in sequential load order. The <U’n-remove command is used to recover
from inadvertantly removing the wrong record with the <R>emove command.
Finally, the <W>rite command is used to write the buffer contents to a disk
file. This function alsc provides the opportunity of changing the module's
ENTRY address as noted in the MODULE's status display.

ORDERING INFORMATION:
CMD-FILE: For TRS-80 Model I under LDOS 5.1, TRSDOS 2.3 and

TRS-80 Model III under LDOS 5.1 and TRSDOS 1.3.
PRO-CESS: For LDOS/TRSDOS Version 6 [i.e. Model 4, etc.].

ZCAT/PRO-ZCAT by Karl A. Hessinger

We know you have built up a collection of hundreds of diskettes and need
an easy way to locate that particular program and file. We know you want fast
response and speed! So rather than waste time trying to determine what DOS
each of your disks is compatible with, we recognize that the LDOS user stays

with LDOS. ZCAT is a fast machine language program that creates and maintains
a catalog of all files which reside on your LDOS-formatted diskettes.

This package is menu driven for ease of use. The initial "GETSPEC" menu,
allows you to specify which drive contains your catalog files [a catalog file
uses an extension of "/CAT" and is the data base for your disk directories].
Once you specify the drive number, ZCAT displays all files on that drive with
a "/CAT" extension. You then enter the name of the catalog file you wish to
read or create. Once the specified catalog file has been read ar created, the
master menu will be displayed.

*>MASTER MENUC<

<A>dd disk to list
<U>pdate disk in list
<C>hange a diskname
<R>emove disk from list
<{S>earch for a file
<{D>isplay directory
<L>ist disks on file
<P>rint files in list
<E>xit to GETSPEC

Selection ?

DIR file : MARC/CAT:0 Files cataloged : 324
Disks cataloged : 15 Maximum # files : 2226

The desired function may be selected by pressing the letter of the
function which is bracketed between the '<{>' symbols.

The <A>dd function is used to scan a new disk. ZCAT adds the disk name
to the catalog 1list then adds all of the non-system, visible files to the
list [invisible and/or system files may be included via command line
options]. After the disk has been cataloged, the directory list is sorted.
You can then insert another disk to catalog with one keystroke!

The <U>pdate function scans the directory of an ALREADY cataloged disk
and updates the catalog file to reflect any changes in the free space on the
disk or any changes in the contents of the disk.

The <C>hange function allows you to alter a disk's name - just like from
DOS using the ATTRIB command.

The <R>emove function deletes all traces of a disk from the catalog
list. ZCAT will display the names of all disks which are currently in the
directory list to refresh your mind so that you can select the correct name.

The <S>earch function will allow you to rapidly locate a file or a group
of files in the catalog list by means of your entered search string. The
search string may be a filename, a partial filename, or an extension. The
search string can also contain a wild card character ('$') which may be used
to mark a position as "don't care".

The <D>isplay function lists all files which reside on a particular
disk. ZCAT displays the diskname and available free space then displays an
alphabetical 1ist of all files on the disk. The information listed for each
file includes: filename, protection level, logical record 1length, number of
records, size in K, and modification date., A sample follows:

Diskname : MARC0037 Free Space : 0K

Filespec Prot LRL #Recs Size Mod Date Diskname
ATOD/ASM Full 256 2 1K 27-5ep-82 MARC0037
CASSCO/ASM Full 256 34 K 18-Jun-82 MARC0037
CASSCO/CMD Full 256 4 1K 18-Jun-82 MARCO0037
cca/cce Full 256 46 12K 22-Sep-82 MARCO0037
cc3/cee Full 256 27 7K 22-Sep-82 MARC0037
cca/ccc Full 256 32 8K 21-Sep-82 MARC0037
cce/ccc Full 256 18 5K 31-Aug-82 MARCO037
CHGDATE/BAS Full 256 4 1K 20-0ct-81 MARCO0037
DABS/ASM Full 256 2 1K 27-Sep-82 MARC0037
DADD/ASM Full 256 3 1K 27-5ep-82 MARC0037

[Tisting continues]

The <L>ist function displays all the disks which are currently in the
catalog list. The catalog filename followed by a list of all the disknames on
file with the free space available on each disk is included in the display.
The following illustrates such a listing:

These disks are in directory file : MARC/CAT:0

Disk Free Disk Free Disk Free Disk Free

MARC0025 3K MARC0026 3K MARCO027 OK MARCOO28 0K
MARC0029 0K MARCO030 33K MARCO0031 2K MARC0032 15K
MARC0033 3K MARC0034 9K MARCO035 11K MARC0036 32K
MARC0O037 OK MARCOO38 84K MARCO0039 54K

The <P>rint function will allow you to produce a printed hardcopy of
your directory list. You can print “<F>iles by disk order", "<E>xpanded file
order®, or "<C>ompressed file order".

The <E>xit function returns you to the GETSPEC menu to give you the
opportunity to save or cancel all of your changes. At the GETSPEC menu, you
can also change to a different catalog file.

This package is all you need to get a handle on your disk collection.
Don't waste your time trying to DIR your disks to find a particular file.
Catalog your collection, fast - with ZCAT.

ORDERING INFORMATION:

ZCAT: For use with the TRS-80 Model I/III under LDOS 5.1.
PRO-ZCAT: For use with LDOS/TRSDOS Version 6.

MLIB - by Richard k. Deglin

What user of Microsoft's MACRO-80 assembler has not reeled in
frustration while trying to deal with its relocatable libraries? The
frustration can now vanish with your use of MLIB - a module Tlibrarian. MLIB
is a software tool which will aid you in construction of Microsoft-compatible
relocatable object file Tlibraries. These libraries are supported by the
Microsoft Tlanguage products MACRO-80, BASIC-80, FORTRAN-80, and LINK-80.
MACRO-80 and FORTRAN-80 were formerly sold by Radio Shack as the Model I Disk
Editor/Assembler and FORTRAN packages, while the BASIC-80 compiler is often
known as BASCOM. FORLIB/REL, which is an integral part of the FORTRAN-80
package, is an example of such a library.

MLIB is menu driven and easily controlled by single-letter commands. A
command menu similar to the following is your master control panel:

0™
T |71 | MLIB 3.1L - Relocatable Object File Librarian
Rilcllin] (C) Copyright 1983 Riclin Computer Products
T
A

~ X Load library Save Library

| Add module Module map

| Purge module Disk Directory
| Replace module Kill disk file
| Extract module Clear buffer

| Insert before module eXit program

|

|

Bytes used: 0, free: 29736 |
|

MLIB is menu-driven for your convenience. To execute a command, enter
the first letter of the command. Alternatively, you may find it simpler to
move the blinking cursor until it is next to the desired command, and then
depress <ENTER> to execute that function. This 1is accomplished by using
either the <DOWN-ARROW> and <UP-ARROW> keys. The blinking cursor will
reappear as a solid block next to the selected command, as a visual
indication of which command is executing.

If an error occurs, MLIB will “beep" the console speaker if your machine
is so equipped (on a Model I/III computer, a short beep tone will be directed
to the cassette port which can be audible if you have an audio amplifier and
speaker hooked up). An error message will appear at the bottom of the screen,
and will remain there until you enter any keystroke, indicating that you have
acknowledged the error.

The <A>dd command adds a new module to the library in memory from a disk
file. This is the primary method of building a new library or adding to an
existing one. The <(C>lear command resets all internal pointers, thus
effectively destroying what is currently in the memory buffer. The
<D>irectory command displays an unsorted directory of visible files for the
selected drive. The <E>xtract command takes a single module from the library
in memory and writes it to disk as a stand-alone /REL file. The <I>nsert
command places a new module from disk into the library in memory. The <K>ill
command deletes a file from disk. The <L>oad command reads an existing
library into memory from a disk file.

The <M>ap command displays the attributes of the 1library which is
currently in memory. This listing can be in either detailed or summary
format. The summary format option 1ists all modules, by name only, in the
order they exist in memory. The summary would Took like this:

|
RAN INT4 DSQRT ~ DMOD DSIGN DABS DATANZ
DATAN DLOG1O DCOS DSIN DBLEXP DEXP DLOG
DMINI ~ DMAX1 DCOMP DBLDIV DBLFLR DBLPLY DBLUTL
DMLDV ~ DSHR DBLCON MFM AMINO MINO AMAX0 |
TANH SQRT MIN1 MAX1 MAXO IFIX FLOAT
EXP DIM COSIN ATANZ ATAN AMOD AMIN]
AMAX1 AINT ABS ALOGIU ALOG MOD RIEXP
NEGF RREXP NEG NEG EXPB L0G2 POLY |
FADD ITIEXP FOIV STOP FMUL ADE FLR |
FCP FLT CMPGTO IDIV SIGN RAT DAT |
ISIGN IABS NEGATE XAR IDIM FAT2 IMUL |
POKE UNPACK PSPLAC ICP FORMIO NORM SHIFT
RNDOVF ZAC IOINIT LUNTB IATZ LODSTR SAF 1
|
|
[

Hit <ENTER> for next screen, Hit <BREAK> to exit

The detailed format option displays the attributes of each module as
shown in the following illustration:

Module name Module size Program size Data area size
DSKDRV 1417 996 76

|

|

=

| Entries: $FLBUF $FLCNT $FLFCB $FLFLG $GTFCB $GTFLG
| 0000" 0014" 0032" Q028" 0024" 0018"
| $MEMRY DSKDRV OPEN

| 0048" 0O0O0A' 033C'

| .

| Externals: $BF $BL $CLSFL $ERR $I0ERR $IOINI
| $LUNTB $REC SUN

|

| Commons:

|

|

|

|

Hit <ENTER> for next screen, Hit <BREAK> to exit

The <P>urge command removes a module from the library in memory. If the
module has multiple entry points, all will be deleted. The <R>eplace command
replaces an existing module in memory with a new version from a disk file.
A1l aliases will be replaced or deleted. The new module may be longer,
shorter, or the same lengtn as the old one - MLIB will compress, overlay in
place, or expand the library in memory to fit the new length. This command
will abort on module not found, out of memory, symbol table overflow, or disk
error. The <S>ave command writes the entire library in memory to a disk file.
The e<X>it command returns you to "DOS Ready". If there is data in the buffer
that has not yet been saved to disk, you have a chance to abort the exit and
return to the main menu.

ORDERING INFORMATION:

MLIB: For use on the TRS-80 Model I under LDOS 5.1 or TRSDOS 2.3 and,
the TRS-80 Model III under LDOS 5.1 or TRSDOS 1.3.
PRO-MLIB: For use under LDOS/TRSDOS 6.x.

MACH2/PRO-MACHZ by Karl A. Hessinger

The LDOS file system allocates space for your files in one of two ways.
It either assigns space randomly [as used in LDOS 5.0.x, 5.1.0, 5,1.1, 5.1.2,
5.1.3, 6.0] or assigns space automatically starting from cylinder one [5.1.4,
6.1]. Since the access of disk files requires a disk drive to step from track
to track [which is one of the slowest operations of a disk drive], the most
efficient placement of files 1is one that minimizes this stepping operation.
Either method may prove inefficient in particular cases since the optimimum
arrangement is dependent on the specific function and access sequence of all
files on the disk. Once and for all, MISOSYS now puts you in the driver seat
when it comes to DOS allocation of disk space. Whether you are a commercial
programmer wanting to construct "optimized" master diskettes for distribution
purposes, whether you are a sophisticated hacker wanting to squeeze every bit
of performance out of your system, or whether you just want to create most
contiguous files where you want them, MACH2 is for you.

MACHZ is a collection of four utilities that were designed to work
together with such ease, that you will be amazed at how easy direct control
of space allocation can be. The MACH2 utilities arz friendly.
The MACHZ utilities are flexible. Finally, the MACH2 utilities are powerful.
Youtare not limited to floppies, MACH2 works just as well with hard drive
systems.

First, the MAPPER provides a diskette map by granule by file. It
produces a screen or printer listing such as the following [some lines have
been deleted to abbreviate the listingl:

Diskname : TESTDISK Free Space : 108K
Sides : 1 Density : Double Cylinders : 40
0 BOOT/SYS M80/CMD M80/CMD
1 m™M80/CMD M80/CMD M80/CMD
2 M80/CMD M80/CMD TEST/CMD
3 TEST/CMD TEST/CMD TEST/CMD
19 ** Empty ** *k Er'npt_y *% ** Empty **
20 DIR/SYS DIR/SYS DIR/SYS
24 *% Empty ** ** Empty ** *% Empty **
25 ** Locked ** ** Locked ** ** Locked **
26 ke Emty *k *k Empty *k dk Empty *k
27 M8OPACK/CMD MBOPACK/CMD MBOPACK/CMD
28 MBOPACK/CMD MBOPACK /CMD MBOPACK/CMD
37 ** Empty ** *% Empty ** *% Empty **
38 M80/CMD MB80/CMD MB80/CMD

You can use the MAPPER just to get a look at what files are where. This is
great for other uses [such as reconstruction of damaged cylinders]. Use the
MAPPER with the BLANK option on a freshly formatted [or otherwise disk with

available free space] and all of the "** Empty **" denotations are blanked
out and bracketed giving you a worksheet for preparing your optimum
arrangement of files.

Second, the CALC utility can process a disk's files to let you know
exactly how many granules each file would take up on every media format
supported by LDOS. This tool is great for taking a disk full of programs that
are on one media type and ascertaining the granule requirements for a
different media type. As easy as CALC :1 (P), you get the following printout:

5II 5 " 8" 8“
Filename single double single double 4 SPG 16 SPG 32 SPG

BOOT/SYS 1 1 1 1 2 1 1
DIR/SYS 4 3 3 2 5 2 1
M80/CMD 15 13 10 8 19 5 3
M8OPACK/CMD 15 12 9 8 18 5 3
TEST/CIM 5 4 3 3 6 2 1
TEST/CMD 15 12 9 8 18 5 3
TEST/DAT 0 0 0 0 0 0 0

Pick your media and use your MAPPER-generated worksheet to develop your
customized layout of files - or plunge right in to ALLOC since it gives you a
dynamic free-space map on-line!

The allocation tool, ALLOC, lets you tell the DOS where you want a file
placed. ALLOC's screen display conveniently presents the controls. All you
need do is specify the file specification, and for each directory extent, the
starting cylinder, starting granule, and number of granules. Once you
identify the file spec, ALLOC gives you a three-line scrolling free-space map
so that you can see what granules have already been allocated on the disk in
question. ATl you need do is allocate the space for your files then copy them
to the "optimum" disk. Look at the useful ALLOC screen display:

ALLOC - LDOS File Space Allocator

6- 11 xx. Vi V% i XXX Xis
12- 17 ... Viw e $5% o wiis
18- 23 e S XXX e ces P

Allocating file : TEST/DAT:3

. Starting Starting Granule
Extent Cylinder Granule Count
1 12 0

Want to just get a large block of contiguous space for that data base?

HANDY is just handy for those non-critical allocation jobs. HANDY will
easily allocate the most contiguous extent of space in up to four extents -
the number of extents controlled by you!

We know that you have been asking for better control over space
allocation for a long time. We know that you have needed MACH2 for a long
time. A1l that LSI could come up with was more stringent DOS control over
file placement. Now you can take control! MISOSYS delivers with MACH2!

ORDERING INFORMATION:

MACH2: For TRS-80 Model I/III under LDOS 5.1.
PRO-MACH2: For use with LDOS/TRSDOS 6.x [i.e. TRS-80 Model 41.

YRHARD Hard Disk Driver by Roy Soltoff

This package provides driver support for the HARD DISK III type of hard
drive manufactured by the V R Data Corporation and using the hard disk
controller manufactured by the XEBEC corporation. The VRHARD package provides
for the operation with LDOS 5.x or LDOS/TRSDOS 6.x of one or two IDENTICAL
hard drives [i.e. two 5 meg, two 10 meg, etc.].

The driver supports partitioning of the hard drive media by both number
of heads and number of cylinders. Up to eight heads and up to 999 cylinders
are supported. The driver initializer is very friendly and virtually failsafe
in inhibiting you from making conflicting partitioning requests during the
partitioning operation.

The driver supports both the fixed media and removable cartridge media
type drives. Your configuration of two drives may he mixed as to type.

The package includes MOVEFILE, a large file segmentation backup utility.
This machine-language program gives you the capability of making backups up
the large file by segmenting it into floppy-sized sub-files. MOVEFILE also
provides for the restoral of the large file from the sub-files.

ORDERING INFORMATION:

VRHARD: For use with TRS-80 Model I/III under LDOS 5.1 and
for use with LDOS/TRSDOS 6.x [i.e. Model 4, etc.].

Note: MISOSYS can custom fit our XEBEC controller driver to your non-VR hard
drive. Contact MISOSYS for consultation.

MISOSYS ORDER FORM

shokokokohokokzkokokokohohokokokokokokohokokohoh ok ok ok ohokokohokok ok ok ok
Company Name: Date:

Individual: P.0.#:

Address: Apt#: Phone: __ + -
City: State: ZIP:
shokokskokohkokshkohk=kok=hkokakzkokokokokskok=kokokokokokokokakokakakohok=%=
Payment: Check/M0 { } MC/VISA { } Signature coD { }
Credit Card #: Expires:
=ka=kokokokokokokokokokohokokokokobokobokokokokaokokokokokokohokokak=oh ks
| Qty | Description |Net Each| Total |

Send to: MISOSYS [703+960-2998] Sub-Total | |
P.O. Box 4848 s
Alexandria, VA 22303-0848 VA Residents Sales Tax | |

Specify computer: Model I { } Model III { } Shipping Charge | |

MAX-80 { } Model II { }Model 4 {} = =cecemcea---
Qther {} Total | |

MISOSYS PRICE LIST
Effective November 15, 1983

CMD-FILE/PRO-CESS Version 2cvieeereeninsnnennnnnaens $40
CON8OZ/PRO-CONBOZ - Translate 8080 to Z-80 $40
CONVCPM/PRO-CURE - Transfer CP/M files to LDOS $50
DSMBLR-III/PRO-DUCE - Disk disassemblerc.cuunn. $40

EDAS/PRO-CREATE - Version IV Macro assembler $100

GRASP - Graphics Support Packagecovvsvesncncsecanss 350

HELP/PRO-HELP - Help for LDOS 5.1/TRSDOS 6.X $25
LC/PRO-LC - Compiler/Macro assemblerceeeaeee... $150
MACH2/PRO-MACHZ - File allocation packageceveeuaas . $40
MLIB/PRO-MLIB - /REL Librarian ...eeeeeecesesssncnesens $50

MSP-01/PRO-GENY - DOAUTO/SWAP, DOCONFIG, MEMDIR, PARMDIR $40

PaDS/PRO-PaDS - Partitioned Data Set utility $40
SOLE - DDEN booting LDOS Model I ...unirieivrnniennnnans . $25
THE BOOK, ACCESSING THE TRS-80 ROM, VOL Ilcvuvunnn . $5
THE C PROGRAMMING LANGUAGE by Kernighan & Ritchie $18
THE PROGRAMMER'S GUIJE TO LDOS/TRSDOS VERSION 6 $20
VRHARD - Hard disk driver packageooeus SRR . $75
ZCAT/PRO-ZCAT - LDOS Catalog utility .vvivevevevnnnnnns .. $30

ZGRAPH/PRO-ZGRAPH Version 5 - Graphic Screen Editor $50
ZSHELL - Command processor for LDOS 5.1.X siivvuenannnn. $40

Shipping: Items marked "*“, add $5. Items marked “+", add $4

A1l others, add $2.00 plus $0.50 each additional item.
COD add $1.50. Shipments > 12 oz or > $40 are via UPS.

VA residents, please add 4% Sales Tax.
Qutside US, Canada, and Mexico multiply shipping by 4
for AD Air or Air Parcel Post.

Available 11/30/83

&& Available 12/15/83

&6

#

##

MISOSYS
P.0. Box 4848
Alexandria, VA 22393-0848

Contents: Printed Matter

	00.tif
	01.tif
	02.tif
	03.tif
	04.tif
	05.tif
	06.tif
	07.tif
	08.tif
	09.tif
	10.tif
	11.tif
	12.tif
	13.tif
	14.tif
	15.tif
	16.tif
	17.tif
	18.tif
	19.tif
	20.tif
	21.tif
	22.tif
	23.tif
	24.tif
	25.tif
	26.tif
	27.tif
	28.tif
	29.tif
	30.tif
	31.tif
	32.tif
	33.tif
	34.tif
	35.tif
	36.tif
	37.tif
	38.tif
	99.tif

